Direct evidence that apoptosis enhances tumor responses to fractionated radiotherapy.

نویسندگان

  • B A Rupnow
  • A D Murtha
  • R M Alarcon
  • A J Giaccia
  • S J Knox
چکیده

Currently, the contribution of cellular apoptotic sensitivity to tumor response after radiation therapy remains controversial. To address this issue, the survival of Rat-1 fibroblasts containing a 4-hydroxytamoxifen-regulated c-Myc allele, c-MycER (T. D. Littlewood et al., Nucleic Acids Res., 23: 1686-1690, 1995), after single and fractionated doses of radiation was investigated. This model system allows pharmacological regulation of apoptosis sensitivity in the same cells in vitro and as xenograft tumors derived from these cells in vivo (G. I. Evan et al., Cell, 69: 119-128, 1992; R. M. Alarcon et al., Cancer Res., 56: 4315-4319, 1996). Activating c-MycER in vitro resulted in marked sensitization of Rat-1 fibroblasts to the effects of both single-dose and fractionated irradiation as measured by the induction of apoptosis and clonogenic survival. Overexpression of the antiapoptosis protein Bcl-2 suppressed the induction of apoptosis and increased clonogenic survival in cells with activated c-Myc after single-dose and fractionated radiation. Systemic time-release implant delivery of 4-hydroxytamoxifen to severe combined immunodeficient mice bearing Rat-1-MycER tumors over the course of either single-dose (10 Gy) or fractionated (five fractions of 2 Gy) radiotherapy resulted in prolonged tumor growth delay relative to identical tumors from mice that received placebo implants. Furthermore, tumors derived from Rat-1-MycER cells that overexpressed Bcl-2 exhibited shorter tumor growth delays relative to similarly treated Rat-1-MycER tumors. The length of tumor growth delay after single-dose or fractionated radiotherapy strongly correlated with the extent of radiation-induced apoptosis in the xenograft tumors as measured by terminal deoxynucleotidyl transferase-mediated nick end labeling. These in vivo results provide direct evidence that increasing the sensitivity of tumor cells to die by apoptosis increases the efficacy of fractionated radiotherapy by reducing tumor cell clonogenic survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Release of monocyte migration signals by breast cancer cell lines after ablative and fractionated γ-irradiation

BACKGROUND Radiotherapy, administered in fractionated as well as ablative settings, is an essential treatment component for breast cancer. Besides the direct tumor cell death inducing effects, there is growing evidence that immune mechanisms contribute - at least in part - to its therapeutic success. The present study was designed to characterize the type and the extent of cell death induced by...

متن کامل

Repopulation of tumor cells during fractionated radiotherapy and detection methods (Review)

Repopulation of tumor cells during radiotherapy is believed to be a significant cause for treatment failure. The phenomenon of tumor repopulation during fractionated radiotherapy was found from clinical observations that identified that the local control rate decreased with a prolonged treatment time. A series of animal experiments with varied overall treatment time and fractionated doses were ...

متن کامل

Microenvironment and Immunology Blockade of TGF-b Signaling by the TGFbR-I Kinase Inhibitor LY2109761 Enhances Radiation Response and Prolongs Survival in Glioblastoma

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor that tends to be resistant to the ionizing radiotherapy used to treat it. Because TGF-b is a modifier of radiation responses, we conducted a preclinical study of the antitumor effects of the TGF-b receptor (TGFbR) I kinase inhibitor LY2109761 in combination with radiotherapy. LY2109761 reduced clonogenicity and increased r...

متن کامل

Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma.

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor that tends to be resistant to the ionizing radiotherapy used to treat it. Because TGF-β is a modifier of radiation responses, we conducted a preclinical study of the antitumor effects of the TGF-β receptor (TGFβR) I kinase inhibitor LY2109761 in combination with radiotherapy. LY2109761 reduced clonogenicity and increased r...

متن کامل

Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade.

Radiotherapy is a major part in the treatment of most common cancers, but many patients experience local recurrence with metastatic disease. In evaluating response biomarkers, we found that low doses of fractionated radiotherapy led to PD-L1 upregulation on tumor cells in a variety of syngeneic mouse models of cancer. Notably, fractionated radiotherapy delivered in combination with αPD-1 or αPD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 58 9  شماره 

صفحات  -

تاریخ انتشار 1998